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SUMMARY

A two-dimensional Lagrangian finite-difference computer program is

developed for wave propagation analysis of buried model structures under

ground-shock loading. The numerical scheme is the standard method originally

proposed by von Neuman and Richtmyer, using artificial viscosity to smooth

shutJk fronts. The program is entirely core-contained, and is limited to

about 3,000 nodes because of its anticipated application on personal

computers such as IBM-AT.

Material models include standard hydrodynamic-elastic-plastic relations

as well as a new equation for soils and concrete.

Three model systems were considered for wave analysis: plane slabs with

and without a protective soil cover and a buried model frame. The first two

represent two of the idealized model tests described in Volume I. Since few

dynamic data exists regarding the behaviors of the sand and microconcrete

used in the construction of the model systems, the calculations were

intended for generating the qualitative features of model behaviors.

Nevrtheless, the computational results were consistent with experimental

observations and provided a rational basis for interpreting modes of

failure, load profiles at concrete surface, and their interrelationships.

The wave analysis of the buried frame indicated that modes of

structural failures under dynamic loading can be predicted by directly

focusing on shock waves that excite the model structure.
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PREFACE
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SECTION I

INTRODUCTION

A. OBJECTIVE

This phase of the research program, undertaken under Contract FO 8635

85K 0052, was concerned with the development of computational capabilities,

primarily in support of the experimental phase of the program described in

Volume I of the two-volume final report. There were two interrelated goals.

The first was the development of a suitable computer program and

constitutive equations to study numerically the idealized scaled model

testing of buried structures through use of our gun facilities. The second

was the demonstration of the applicability of the program to more realistic

mode] structures. Special emphasis was placed on a unified treatment of

topics that are traditionally analyzed separately. They are ground- shock

propagation, soil-structure interactions, in-structure shock wave propaga-

tion, and failures in structural members.

B. BACKGROUNM

Dynamic problems of protective structures attendant on impact and/or

explosion are difficult to solve because of nonlinear differential equations

involving complex geometry and materials behaviors. Therefore, traditional

procedures for the design and analysis of protective structures against

conventional, as well as nuclear weapons, have been separated into two or

three distinct stages (References I and 2). For instance, in the case of

blast or ground-shock loading, th procedure involves two separate steps.

The first is the determination of equivalent loads from blast or ground

shoc at a prescribed staidoff distance. The second is the design analysis

and performance predictions of a given structure, based upon the equivalent

loadf,, by assuming an equivalent single- or multidegree of freedom system.



Recent improvements in the development of predictive aid analysis

techniques have been mostly numerical and involve computer simulation of the

dynamic problems by use of finite element and finite difference methods

(References 3-6). Large-scale computations have come into widespread use in

structural and ordnance designs. These methods have now been developed to a

point where they can handle complex shapes, large deformations, and failures

involved in problems of impact and explosion. The principal limitation in

the use of these numerical methods is said to be largely the uncertainty in

the description of meterials behavior (Reference 3). If the response model

is inadequate, they are known to provide solutions which are not even

qualitatively correct. Therefore, effective use of any of the numerical

techniques requires iterative adjustments of material models in close

collaboration with material and structural testings.

The present investigation leading to this repart is an initial attempt

of similar type to analyze and aid in the design of thc scaled model testing

of buried concrete structures by use of a finite difference computer

program.

C. SCOPE/APPROACH

Many computer" codes are available foi the analysis of transient

problems associated with impact and explosions (References 4-11). Our

computci program is a two-dimensional explicit finite difference code in

plane geometry and is derived from other codes of this type which are known

by their acronyms as HEMP, TWOODY, STEALTH, and TROTT. Special features of

the code are :

" the code is core-contained,

" the cell layout is easy,

" the code can be easily modified for new materials

models.

2



However, it is restricted in the size of problems that can be treated and

does not contain features such as slide lines, rezoning, and buffering of

cell variables that are common in large general-purpose codes described

above.

Constitutive models in the program are presently limited to: (1) a

standard hydrodynamic-elastic-plastic model for solids and (2) a model

specially developed for soils and concrete. The latter is developed to deal

with the influence of porosity on the inelastic beh&vior of materials in a

physically consistent manner so that phenomena such as shear enhanced pore

compaction can be represented. New models will be added as needs arise. For

instance, a high-explosive equation of state will be included in the near

future to consider the scaled model simulation of buried structures under

close-in detonations.

Two model systems were investigated numerically: plane slabs with and

without a protective soil cover and a bur-ied model frame. The explosive

loading on these structuros was simulate d by a shock-wave loading described

in Volume I of the firw4 rr:pci . Selected results from the numerical

simulation of the plante slabs were compared with data obtained in the

experimental phase of the project. They are a qualitative description of

failure modes, ground-shock propagation in the soil cover, and structural

response behaviors of the model structures. However, because of limited

experimental data, no systematic attempt was made to fit the experimental

data numerically by optimizing material parameters in constitutive

equations. The principal goal of the calculations was to demonstrate the

capabilities of the code.

The remainder of this report is divided into three sections. Section

IT presents a summary of basic continuuni mechanics equations for describing

two-dimensional stress wave propagation through solid and porous materials

such as soil. This section also describes the algorithms used to solve the

basic equations by using an explicit finite difference method. Section III

describes the numerical investigation of ground-shock propagation in simple

layered systems: plane slabs with and without protective soil cover and a

3



buried frame. Selected results from the first example were compared with

experimental results reported in Volume I of the final report. Section IV

presents the conclusions reached from the sample simulations.

4
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SECTION II

CODE DESCRIPTION

A. BASIC EQUATIONS

The mathematical description of transient dynamical problems attendant

on impact and detonations consists of the conservation laws of physics,

initial and boundary conditions, and material models. The finite difference

technique is an approximate method of solving these equations using

discretized time and space coordinates. The Lagrangian method is based upon

a coordinate system that moves with the material. It has been developed to

a point where general-purpose codes are now capable of handling large-scale

simulations involving 50,000 nodes. Since there are many excellent

expositions of the Lagrangian technique for stress wave propagation in one-,

two-, and even three dimensions (References 7-11), what follows is a summary

description of the basic equations and computational procedures involved in

our code. For details, readers are referred to the References described

above. But, -n exception will be made in the description of the material

model for soils and concrete because of its importance in the solution of

problems of interest.

1. Conservation Equations

a. Conservation of Mass

The equation expressing the conservation of mass is

u,x + Vy r A/A (1)

where u and v are the components of velocity in recailinear Lagrangian

coordinates (x,y), A/A is the aerial strain rate, the dot "." signifies the

partial time derivative, Ux = au/dx and Uy = dv/ay. The volumetric strain

rate is related to the density change as follows:



-(ap/at)/p z U x + U, + W,

= A/A in plane x - y geometry (2)

where 1/p = V = the specific volume, and W is the velocity component in the

z-axis (zero in plane geometry).

The local strain rate is defined as the symmetric part of the

velocity gradient.

xx Ux
XX X

yy y

xy (v'x + u, )/2.

The local rotation rate is defined by

W (v,x - u, y)/2.xy x ,/2

b. Conservation of Momentum

The equations expressing the conservation of momentum are

pU : a +a - q, (3)
xx, x xy, y

pv :xy + a - q, (4)
xyy yyy y

where p is the density, u and ' are the components of acceleration, Uxx ,

Oxy, and vyy are the stress components, and q the artificial viscosity.

The sign convention for the stress components is positive for tension.

Pressures are positive for compression.

6
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I

Inclusion of the artificial viscosity term in the momentum

equations is now a standard technique of han ig discontinuous shock 'waves

numerically, by rendering the solution continuous using viscous effects.

However, care is necessary so that the viscous term does not affect the

solution anywhere except at shock fronts. In our code the main artificial

viscosity term consists of linear and quadratic bulk viscosity components

given by

bCA P + b2A(pt) 2 /p for r, (5)

0 for pt 1 0

where b] and b2  are constants and Cs  is the speed of sound given by

Cs = (arlap)1/2 (6)

where s indicates the differentiation at constant entropy.

When a large distortion of computational cells is

encountered, additional viscosities are included in the deviatoric stress

components. They are devised to minimize hour-glass shaped distortion of

quadrilateral cell elements. This distortion is a consequence of the fact

that the quadrilateral cell used in plane geometry has eight degrees of

freedom, but that only six are accounted for in the basic equations that

provide resistance to these motions. In some codes these viscosities are

known as the triangular artificial viscosity. These triangular stresses are

qxx 3 Cs p (2 -i y) (7)

qyy b 3 A / 2 Cs P (2 yy -x (8)

qxy 3 b 3 AI/2 C5 s (9)

7



where b3 is a constant. These stresses are added to the stresses obtained

from the constitutive equations described in the next section.

c. Conservation of Energy

The following expression of the conservation of energy

ignores thermal heat conduction. This is a reasonable approximation for the

time scale involved in stress wave propagation.

E -(p + q) V + V(s E + S + S~ 4 2 s )(10)P xx yy xy zz zz xy xy

where E is the specific internal energy, p the pressure, sx, sxy , and Syy

are the deviatoric stress components defined by

s. =j a . + p (11)

where i and j stand for x and y.

2. Constitutive Equations

The present program contains two material models. They are a

standard hydrodynamic-elastic-plastic model for solids and a special model

for porous media such as soil and concrete. The former model was initially

developed for the description of metallic materials, but it has been

effectively used even for materials such as concrete in a certain range of

impact conditions (Reference 13).

In stress wave calculations, it may be necessary to permit

fracture of materials (say, spalling) during the calculations. An effective

representation of such a separation may be provided by letting the stress in

the cells along one side to reduce to zero. The algorithm is described in

Section TIB.



a. Hydrodynamic-elastic-plastic model

In this standard model the stress tensor aij is resolved into

the pressure and deviatoric stress tensors as follows (same as Equation

(11).

aii = sij - p.

The hydrostatic pressure p is described by a Mie-Gruneisen equation given by

p r f (p) + p F E (12)1

where F is the Grineisen ratio and f (p) is written in terms of a polynomial1
function:

f (p) = a ( - 1) + a2 (n - 1)2 + a (q - l)3  (13)1 1 23

where q = p/po, and po initial density.

The deviatoric stress components account for elastic

behaviors and are calculated by the frame-indifferent isotropic elasticity

equations (Reference 12),

V
S.. =2 ze. (14)

V
-.=s s .+ s. (15)Sij ii -ik kj kj jk

V
where Sij is the co-rotational stress rate, p, shear modulus, Mik is the

e
component of the rotation tensor, and eij are the elastic deviatoric strain

components defined by

eij =ij - (1/3) ckk 6 ij (16)

9



n plane geometry Equations (14) and (15) reduce to

xx = 2p exx + 2 v sxy

Syy = 2y eyy + 2& SXy

Sxy 2 pcxv - w(sxx - sy) (17)

here w = wXy local rotation about the z-axis.

The transition from an elastic to a plastic state is

ietermined by the Von Mises yield function

g(o..) s.. - 2Y2 /3 (18.)ii' ij 13

ihere Y is the yield stress in simple tension. The material is elastic if

< 0, and plastic if g = 0, whereas the condition g - 0 can never be

-ealized. In the plastic state it is assumed that the total strain rate is

.he sum of the elastic and plastic strain rates and that the plastic strain

-ate is determined by an associated flow rule such that

: .e . 19
IJ ij ij

.pt

E =j a ~agldo.. (20)

In this formulation the plastic strain rate becomes normal to the yield

;urface as expressed by Equation (18). This relationship provides an

xpedient algorism for evaluating stress increments in plastic state.

b. Model for Porous Materials

Continuum plasticity has long been used for modeling the

mechanical behaviors of geological materials such as soils and rocks

(References 14 and 15). Recent models involve a complex combination of

mutiplastic potential surfaces and a nonassociated flow rule (References 16-

10



18). However, as the complexity of these model increases, so does the

difficulty of determining their material parameters. It is not uncommon to

find a model with more than two dozen adjustable parameters. With this many

parameters, their determination is rarely complete, particularly when

various paths are involved in loading, as well as in unloading.

The model in our code was originally proposed by Swegle

(Reference 19) as an extension of the hydrodynamic P-a model to include

shear strength in the description of porous materials including geological

materials. The most important feature of this model is its simplicity. Our

investigations (References 20-21) showed that as few as two to four free

parameters are sufficient to deal with materials such as metal and ceramic

powders as well as various types of soil. Other noteworthy features are:

(1) the description of overall stress in terms of the stress in solid

components and porosity, and (2) the use of associated hardening flow rule

to describe coupling between volumetric and deviatoric inelastic behavior.

The following is a summary of Swegle's formalism in

incremental form.

a. Stress

Effective stress components are determined by those of

the solid components and the solid volume fraction a as follows:

a i -p. s.. (21)

p aps = af(V ,E) (22)

s . as. (23)

where a : Vs/V, thE. subscript "s" stands for the solid.

1]



b. Strain

Strain components are partitioned in terms of volume

components, i.e.,

dEij s = (de s/dO)dii (24)

where

do = dV/V and dOs = dVS/V S (25)

It can be shown that, if the above partition of the strain components is

used, then irrespective of deformation modes,

deij s = dej [1 + (da/a)(dV/V)
1'] (26?

where

de.. = at.. - (d0/3) 6.. (27)

c. Elastic regime

Elastic response is formulated by use of the P-a model

and a frame indiffernet isotropic Hooke's law. That is,

(da/dP)elastic = [I/h
2 (a) -I]/K , (28)

where

h(a) = 1 4 [(1 - a).(] - a)f(Co /Cso - 1) (29)

Kso = solid bulk modulus at zero pressure,

Co,Cso =sound velocities at zero pressure,

dsij s  2Gsdeij s + (mikSk-wkisik)dt, (30)

12



d. Plastic Regime

Plastic state of the material is determined by a yield

function similar to that of the perfectly plastic solid described in the

previous section. That is,

g f(J1, 2 (31)

where

J K -3p , (32)

and

41 =(1/2 s js. )1/2 (33)
2 13 13

The material behaves elastically if

g 5 0 (34)

and plastically if

g 0 (35)

Then, the plastic strain increment is prescribed by the associated flow rule

such that

di j de + de j (36)

dE.ij = dh (ag/aa ij) (37)

where the superscript describes the state of the materiel.

13



There are many potential yield functions including the

well known Mohr-Coulomb and Drucker-Prager models for the description of

porous materials. Based upon our experience (References 20-21), the present

* code contains only the elliptic yield function described below. But, we

also tested a lemniscate function for future study. Results with the latter

function are given in Appendix A.

e. Elliptical Yield Function

22
gr[ -ma)/ 1 )]+ tI )/ Yl(a)] - ] (38)

where

pm(a) (pl(a) - K(a)) / 2

p1 (a) (pp(a) + K(a)) / 2

K(a) Ko + cpp(a)

Yllka) =Qo,(l -- (K)M  pp(a)

pp(a) (y/p) [(1 - a)-2p/3 - cp (1 - ao )- 2p / 3 ]

and c, Ot m, Y, P, and cp are constants.

These selections have been made based upon the

observations (References 20 and 21) that they describe the general features

of yield surfaces which are observed experimentally and that their

parameters can be understood through mechanistic interpretation of flow

mechanisms. For example the current form of pp(a), which is the

hydrostatic inelastic compression of porous material, is determined based

upon a spherical pore-collapse model. Detailed descriptions of this model

are found in Reference 20.

3. Boundary and Initial Conditions

Boundary conditions in a layered system may be divided into two

distinct categories: external and internal boundaries. Typically, external

14



conditions are specified in terms of stress or velocity components for- all

boundary points. Common examples are a free surface or a smooth rigid wall

(zero velocity in the direction normal to the wall surface). Normally,

boundary conditions at an internal interface are the standard continuity

conditions for normal stress and velocity. But, they could become very

complex if interfacial motions such as sliding, opening, and closing are

included. In the current code, only the separation of an interface in one

spatial direction is treated. It is an approximate representation through

use of the crack opening described in Section IIB.

Initial conditions must be given for all dependent variables to

determine the subsequent motions. That is, the initial state of stress and

strain, as well as geometry, must be known.

D. COMPUTATIONAL PROCEDURES

In a finite difference approach one starts with the governing

differential equations and approximates them by appropriate discrete

equations based on computational grid or mesh. Our Lagrangian explicit

scheme is derived basically from that found in several general-purpose large

codes (References 8-12). Therefore, no attempt will be made to duplicate

excellent discussions found in these references. We will limit our remarks

to a description of the inner working of our code.

1. Integration of Governing Equations

Figure 1 illustrates our finite-difference grid arranged in a

staggered rectangular array indexed by i and j. Kinematic quantities

dealing with motion such as positions are defined at integer locations. The

remaining quantities such as stress, strain, and internal energy are

calculated at half-integer points as averages over a cell volume or a

surface area. For example, xj, i represents a Lagrangian position at time,

say t . tn and Oj+i/ 2 , i+l/2 a stress component for the quadrilateral cell

having corners at (j,i), (j+]), i), (j+l, i+l), and (j, i+l).
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Tht integration of the dyna-uic equat ions is based upon the

standard leap-frog method arid proceeds as follows. Initially or at time

t - t" , all quantities are defined at all points by the initial conditions

oir previous calculations. Computations to advancto one time step frow tn

tu (; n * ] is done in four steps, as illustrated in Figure 2. First, the

momentum equation, Equations 3 and 4 are solved for the new acceleration at

t := t n  If kj, i were the acceleration being calculated, the quantities

required are specified at neighboring four half--integer points. These

points comprise a computational cell for motion variabes as illustrated in

Figure 1. Then, the resulting acceleration is used to calculate the new

.n+1/2 n+]
velocity and position, xj,i xj, i by using time-centered integrations.



COMPUTATIONAL SEQUENCE

r At initial time, all quantitites are known ]

Calculate the h new acceleration by
the momentum equation

K n

ji,

Calculate the change in velocity and position
by time-centered integrations

in+/2 and xn + l

j'i j'i

Calculate the change in density and strain components

by the equation of mass conservation and
displacement-strain relationships

n+l n+l
Pj-1/2; i-I/2 ' 'j-1/2, i-l/2 etc.

Calculate the new internal energy, stress components,
and porosity, etc., by solving coupled simultaneous

equations for the conservation of energy
and the constitutive equations

n+l n+l En+l
j-1/2, i-l/2 ' sj-1/2, i-l/2 ' j-1/2, i-1/2 etc.

Calculate the next time step by using
the Courant stability criterion

-n+]
at

Figure 2. Computational Sequence for One Time-Cycle
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.n+1/2 .n-1/2 + ,tn  (39)
Xj, i =j'l jl

x. x'. +x .M1/ n+/

n+l n (/2x. -x + n. Atnl+1/2 (40)

where Atn r t n + 1 and &tn+1/2 = tn+1/2 - t n

The order in which computations are performed is such that at the
n+1

time the position of xj, i is computed, the positions and velocities at the

other vertices of the quadrilateral cell having smaller j and i are already

known. A schematic of the order is shown in Figure 3.

j-1 i j*l

i+1 z Points already
advanced to t n *1

i i
- * Point being

advanced to tn+1

I {
II I

i-1, o Point not yet
I -Tadvanced to t"'SI I

Order of

Computation

Figure 3. Schematic Representation of the Order of Computation

In the second step, we use those new positions at t z tn I to

calculate the new density and strain components from, the equation of mass

conservation and displacement-strain relationships, respectively. These

quantities are calculated as averages over a computational cell shown in

Figure 1.
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In the third step, using the new density and strain components,

the energy equation and constitutive equations are simultaneously solvqd for

the new stress components, internal energy, and other constitutive variables

such as porosity. Depending upon the complexity of the constitutive

equations, these simultaneous equations may involve a system of nonlinear

coupled ordiiiary differential equations and require a lengthy iterative

scheme to find solution.

The fourth step is a preparation for the next time cycle and

evaluates the next time increment based upon the Courant stability

condi t ion,

At : tn ]  -- t n  5 Ax/C s  (41)

where A\ - the minimum cell dimension.

In our prog~ram, this equn1. .ir is modified to include tho. effect of

the art if:<al viscusity a:s fK lows (-.t'crence 12".

AtI m , X/Ce'(l- 31 (42)

where C, is the )](,:al sound speed.

Boundary Con,, it'on:

The procedure described in the previous section applies to a point

in the ioterior of the homogeneous Lagrangian grid. At exterior or interior

bourdla' ies th- algorism must he modified. Currently, only a limited number

of boundary conditions is provided ii, our program. Iwo hiiids nf exterior

bo.,undary (-edi on.- are coisidr-e:i. Thesp are a rigid but smooth wall and a

free surfa-:. A rigid wall (or boundary) is represented by setting the

ve]ocity of mesh points in a p'escrJed direction to zero. But no constraint

is imposed on the mot ion of the, mesh points in the direction parallel to the

wal. At a stress fret! boundary, since the stress components are calculated
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as averages over a computational cell, a massless "phantom" zone is created

5eyond the "real" zone. The coordinates of the outside vertices of the

phantom cell are arbitrary and are normally set equal to the coordinates of

the points on the real surface.

For interior boundaries the present version of the code cannot

treat sliding internal interfaces. Therefore, mesh points at an internal

boundary are considered to be common to both sides of the interface and

have the averaged mass of the adjacent materials. However, an effective

representation is provided for a separating interface in one direction by

letting the stress in the cell along one side reduce to zero. This

procedure can also be used to represent approximately the creation of a

crack in the interior of the material. The behavior of cracked material is

simulated by adjusting the stress in the cell so that there is no normal

stress across the crack. But, since a Lagrangian cell having cracks is not

allowed to separate into several pieces, the stress in it is adjusted to the

value appropriate to such cracked material. This is achieved by the

following stress adjustments.

o 0
xx

o 0 + ht
ZZ ZZ

o y 0 (43)xy

where A is a Lame's constant and A - oxx,,'(h + 2y)

C. INPUT AND OUTPUT

Since our computer program is a special purpose code, input and output

data are kept to a minimum amount necessary for solving two-dimensional

stress wave propagation through layered systems. The input data consist of

20



general running and printing instructions, materials data, grid layout data,

and initial conditions. The instructions for the input data preparation are

described in Appendix B.

Because of our emphasis on load profiles, the current output are

limited to stress components, positions, and particle velocities. However,

the program can be easily modified to print other variables including time

histories of dependent variables.
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SECTION III

SAMPLE CALCULATIONS

Two types of problems were considered for sample calculations to test

the computer" program. The first is the calculation of stress wave

propagation in two of the model tests described in Volume I of the final

report. 'he second is the analysis of the model testing of a more

realistic, but hypothetical buried structure. However, since few dynamic

data exist regarding the behavior of the model sand and microconcrete, the

calculations were intendedonly for generating the qualitative features of

model behaviors.

A. SCALED MODEL SLABS

Two experiments were selected for sample calculations. They are M014

and M022. The major goals of these shots were: (1) to demonstrate the

capabilities of producing a selected failure mode, say, spalling, by

tailoring shock pulses and (2) to study the influence of a protective layer

on failure modes as well as on shoc profiles (magnitude, time history,

etc). In these experiments, the dynamic loading was modeled by impact of a

projectile fired from a gas gun and tailored by the projectile size, speed,

material, mass, etc. Ai, idealizd test configuration used for the

simulation is shown in Figure 4.

Materials properties used for simulation of these tests are summarized

in Table 1. However, since no systematic experiments were conducted for the

purpose of generating dynamic material data in this phase of the research

program, no attempt was made to optimize these properties to fit

experimental results. Elastic properties are those found in standard

handbooks. Inelastic properties of Lexanr, aluminum, and microconcrete were

determined using the von Mise criterion and stress for tensile failure

(Reference 22. The use of the perfectly plastic model for the concrete was

solely due to the lack of dynamic data. When data becomes available, it

will be replaced by the porous model. The material constants for the sand
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Figure 4. Test Configurations Idealized for Numerical
Calculations
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TABLE 1. MATERIAL PROPERTIES OF ALUMINIUM, LEXAN AND CONCRETE

^lumiunui Lexan Concrete*

Bulk Modulus (Gpa) 80 3.47 13.1

Shear Modulus (Gpa) 30 0.90 9.4

Density (kg/'m3 ) 2780 1190 1080

Sound Speed (m/sec) 6560 1980 3510

Yield Strength (Mpa) 75 7 28

*Cuniringhani, C. H., Townsend, F. C., and Fagundo, F. E.,

"The Development of Micro-Concrete for Buried Structrures,"

University of Florida, Gainesville, 1986.

were generated through use of Hugoniot data (Reference 23) and our data on

wave arrival times in the pressure range of 1-5 kb. Figure 5 compares of

the Hugoniot data with those generated by computer simulation of shock wave

propagation in the model sand. For the particle velocity of less than 0.2

mm/ psec, waves were too dispersed to define a meaningful shock front. The

calculated Hugoniot at 2 kb was fitted to that estimated from the wave

arrival times.

1. Shot MO 14

Figures V 10 illustrate selected results from the simulation of

Shot MO 14 where a concrete slab was shock loaded without a protective sand

layer (see Figure 4(a)). The aluminum layer was used to prevent impact

damages on the concrete surface. The length of the projectile was

arbitrarily reduced to one half of the original length to save computer

time. This change has no influence on the early-time solutions shown in

Figures 6-10. In this simulation the separation of the interface between

aluminuni and concrete was provided by using the procedure discuss'd in

Section TIB. Also, the edges of the plates were assumed to be free.
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Figures 6 and 7 show the contour maps of normal stress in the

longitudinal and transverse directions respectively. The progressive

propagation of shock wave from the impacting interface is typical of wave

propagation in two dimensions. However, the stress patterns in the thin

aluminum plate rapidly become very complex because of wave reverberations

between the two interfaces: Lexan6 /aluminum and aluminum/concrete.

Nevertheless, as shown in Figures 8 and 9, the stress history at each

interface forms an expected simple "triangular" profile. Characteristic

quantities of the loading profiles, e.g., peak stress and decay time are

governed not only by two-dimensional wave interactions, but also such

parameters as impact velocity, impact geometry, elastic constants, etc. The

very early time oscillation in the history of normal stress at the second

interface is a normal numerical artifact caused by a sudden increase in the

rigidity of material, i.e., concrete.

The appearance of strong tension in the concrete slab at late

times in Figures 6 and 10 is a well-understood phenomenon and was caused by

the reflection of a triangular compression pulse from its back free surface.

When) the tensile stress exceeds the ultimate dynamic strength, a fracture

occurs at that point. If the fracture extends over a wide region as shown

in Figure 6, then a layer of material may even split away (spall) fron, the

rest of the material. In localized loading, the spalled material often

takes the shape of a cone because of the curvature in the wave front.

Unfortunately, since our fracture model does not describe the

process of dynamic fracture (Reference 24), we cannot make a quantitative

comparison of the calculations with the experimental results. But, there is

a qualitative correlation between the triangular region of large tension

found and the spalling observed in the test (see Figure 10 in Volume 1).

2. Shot M022

Calculations of Shot M022 are shown in Figures 10-13. The major

goal of this test was to examine the influence of a sand layer on loading

profiles and the modes of failure. However, in the simulation, the 1]
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thickness of the sand layer was reduced from 3-inches to 1.18-inches (3 cm)

to see wave propagation in the concrete plate within two hours of co puting

time on our IBM 370-168. This reduction was dictated soley by limited

computing funds.

Characteristic features of wave propagation through the model sand

layer are illustrated in Figure 11 in terms of the histories of the normal

stress oxx at several successive points on the x-axis. Two noteworthy

features of these histories are the rapid attenuation of peak stress and the

dispersion of loading profile. In general, these features were generated by

complex two-dimensional wave propagation through the model system. But, the

most critical parameter is the slow wave speed in the model sand. In the

pressure range of our interest (less than 5 kb) this speed is only about

one- tenth of those in aluminum. This results in a strong lateral unloading

of the foward-moving shock from the free surfaces of the projectile and the

aluminum plate.

These histories indicate that by the time a wave reaches the

surface of the concrete slab, the load is no longer a triangular shock

pulse, but rather a step load having a time scale comparable to the

fundamental period of the slab, or longer. The fundamental period

calculated by use of the SAP IV program (Reference 25) was about 140 psec.

This means that the sand layer very effectively transforms a highly

localized shock pulse into a long-time structural loading. Therefore, if

there were any failure in the slab it will be one of the structural modes

such as bending. Figures 12 and 13 show another view of the above

described transformation in terms of stress contours.

Although the wave calculation was not carried out long enough to

observe a tensile failure caused by bending, a bending failure consistent

with the calculation was observed in the specimen recovered after the test.

One additional conclusion that can be drawn from the above

described results is that the wave analysis of the scale model testing is an

effective means of investigating both early-time stress wave response and
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"late-time" structural response in a unified fashion by directly focusing on

shock waves that excite the layered system. WP will illustrate this

advantage in the next example.

B. A BURIED MODEL FRAME

The goal of this exercise was to demonstrate the potential use of the

program to analyze a more complex model than a plane slab. Of particular

interest was the applicability of theprograt for investigating intermediate

or "long-time" structural response in a model structure subjected to a shock

loadi!.g.

The geometry of the problem we considered is shown in Figure 14. It is

essentially Shot M022, but modified so that the model structure is situated

in a more realistic environment. However, the selection of dimensions was

influenced by external factors such as the cost of computing time and the

size of the current program. The soil layer was further reduced to 1 cm.

Since early time responses; are similar to those found for Shot M022,

:)nlv late time stress contours were analyzed to focus on structural response

result from a stress pulse propagated through a layer of protective soil.

Figures 15 and 16 show the distributions of normal stress at three

successive stages of wave propagation. Complex profiles in thp aluminum

plate and simple wave profiles in the soil layer were very similar to those

found for Shot M022. In spite of a relatively thi. oil layer, there was a

subtantial attenuation and dispersion of waves c 'd mostly by lateral

unloading. As in the case of M022, the unloading w determined by the wave

speed in soil which is an order of magnitude slowe, than those in aluminum

and I -:an- . When the shock pulse reaches the concr e structure, it becomes

" '.: varying load having time constants comparable to, if riot longer

than, 'he period of the first structural response mode. This load, in the

i irst ,rd r approximation, is a distributed normal thrust.
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Therefore, if the frame is excited in a simple structural mode, the

mode can be identified by examining the pattern of stress distribution. For

instance, it is believed that the patterns of tension and compression at

45.7 psec (last contour maps) correspond to the shape of the fourth

fundamental mode (symmetric bending mode) of the frame shown. The

alternating pattern of tension and compression in Figure 16 and the

corresponding compression regions in Figure 15 are exactly what is expected

from such a bending response. The period of the fourth mode, according to

the SAP TV program, was about 53 psec. However, no attempt was made to

obtain a quantitative comparison because of the difficulty in duplicating

the identical dynamic load for the SAP program.

Nevertheless, an important conclusion of this calculation is that model

testing combined with numerical simulation is a cost effective means of

generating data base for analysis and aid in the design of protective

structures under c]ose-in detonations.
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SECTION IV

CONCLUSIONS

In the foregoing, we described (1) the successful development of a two-

dimensional Lagrangian finite difference code for the wave analysis of the

scale model testing of buried structures under dynamic loading and (2) the

development of constitutive relations for the description of porous

materials such as soil and concrete. We considered three sample

calculations involving concrete slabs representing actual test

configurations and a buried model frame. Results of the former agreed with

the test results regarding failure modes, and provided a rational basis for

interpreting them in terms of load profiles at concrete structures.

Some of the advantages of the wave approach are:

" regimes of both stress-wave response and early structural response

can be analyzed in a unified scheme

* the analysis directly focus on the stress waves that excite

structures as well as shock-transmitting layers

Other noteworthy features of the results are:

" for the configurations tested here the slow wavespeed in sand

layers is the major cause for the attenuation and dispersion of

ground shock that changed the mode of failure from spalling to a

structural failure by bending.

" an aluminum plate, because of its fast wavespeed relative to sand,

made an effective layer of spreading loads over a wider area of

sand. This phenomenon may be of some interest in the design of

protective structures by using the concept of layered systems.

41



REFERENCES

1. Crawford, R.E., Higgins, C.J., and Bultman, E.H., The Air Force Manual

for Design and Analysis of Hardened Structures, AFWL-TR-74-102, Air

Force Weapons Laboratory, Kirtland Air Force Base, Albuquerque, NM,

October 1974.

2. Fundamental of Protective Design for Conventional Weapons, The

Department of the Army, Waterways Experimental Stations, Vicksburg,

Mississippi, July 1984.

3. Hermann, W., editor, Materials Response to Ultra-High Loading Rates,

National Materials Advisory Board Report NMAB-356, Washington, D.C.,

1980.

4. Nelson, I., "Numerical Solution of Problems Involving Explosive

Loading," in Proc. of Dynamic Methods in Soil and Rock Mechanics, Vol.

2, Balkena, Rotterdam, 1977.

f. Ross, C.A., editor, Proc. of Symposium on the Interaction of Non-

Nuclear Munition with Structures, U. S. Air Force Academy, Colorado,

May 10-13, 1983, University of Florida Graduate Engineering Center,

Eglin AFB, FL 1983.

6. Ross, C.A., and Thompson, P. Y., editors, Proc. of the Second Symposium

on the Interaction of Non-Nuclear Munition with Structures, Panama City

Beach, FL, April 15-18, 1985, University of Florida Graduate

Engineering Center, Eglin AFB, FL, 1985.

7. Zukas, J., et a]., Impact Dynamics, John Wiley & Sons, New York, 1982.

8. Wilkins, M., "Calculation of Elastic-Plastic Flow," in Methods of

Computational Physics, Vol. 3, B. Alder, editor, Academic Press, New

York, 1964.

4?



9. Swegle, J.W., "TOODY-IV-A Computer Program for Two-Dimensional Wave

Propagation," SAND-78-0552, Sandia National Laboratories, Albuquirque,

NM, September 1978.

10. Hoffmann, R., "SEALTH, A Lagrangian Explicit Finite Difference Code for

Solids, Structural, and Thermohydrolic Analysis," EPRI NP-260, Science

Applications Inc., for Electric Power Research Institute, Palo Alto,

CA, August 1976.

11. Seaman, L., "TROTT Computer Program for Two-Dimensional Stress Wave

Propagation," Contract Report ARBRL-CR-00428, SRI International, Menlo

Park, CA, April 1980.

12. Hermann, W., "A Lagrangian Finite Difference Method for Two-Dimensional

Motion Including Material Strength," AFWL-64-107, Air Force Weapons

Laboratory, Albuquerque, NM, 1964.

13. Nilsson, L., "Impact Loading of Concrete Structures," Chalmers

University of Technology, Department of Structural Mechanics,

Publication 79:1, Goteborg, Denmark, 1979.

14. Desai, C.S., and Siriwardane, Constitutive Laws for Eniineerin

Materials, Prentice Hall, New York, 1983.

15. Nelson, J., "Constitutive Models for Use in Numerical Computation," in

Proc. of Dynamic Methods in Soil and Rock Mechanics, Balkena,

Rotterdam, 1977.

16. Vermeer, P.A., and Luger, H.J., Deformation & Failure of Granular

Materials, Balkena, Rotterdam, 1982.

17. Baladi, G.Y., "An Elastic-Plastic Isotropic Constitutive Model for

Sands," in Advances in the Mechanics & the Flow of Granular Materials,

Vol. 2, M. Shahinpoor, editor, Trans Tech Publications, San Francisco,

1983.

43



18. Cowin, S.C., and Carroll, M.M., editors, The Effects of Voids on

Material Deformation, AMD-Vol. 16, Am. Soc. Mech. Eng., New York '976.

19. Swegle, J.W., "Constitutive Equation for Porous Materials with

Strength," J. Appl. Phys., 51, 1980, pp. 2574-2580.

20. Horie, Y. and Park, J-K., "High Pressure Equation of State for Metal

and Ceramic Powders," in Final Report of the DARPA Dynamic Materials

Synthesis & Consolidation Program, Vol. 1, UCID-19663-85, Cline, C.F.,

editor, Lawrence Livermore Laboratory, Livermore, 1985.

21. Park, J-K., and Horie, Y., "Constitutive Equation for Geological

Materials under High Dynamic Loading," in the proceedings cited in

Reference 6.

22. Marsh, S.P., editor, LASL Shock Hugoniot Data, University of California

Press, Berkeley, CA, 1980.

23. Charest, J.A., "Measurement of Stress Wave Characteristics in Selected

Steming Materials," TR 002, Dynasesn, Inc., Goleta, CA, 1977.

24. Curren, D. R., Seaman, L., and Shockey, D.A., "Dynamic Fracture of

Solids," Physics Reports, Vol. 147, 1983, pp. 253-388.

25. Bathe, K-J., Wilson, E.L., and Peterson, F.E., SAP IV: A Structural

Analysis Program for Static and Dynamic Response of Linear Systems,

University of California, Berkeley, CA, 1974.

26. Drake, J.L., and Little, C.D., "Ground Shock from Penetrating

Conventional Weapons," in the proceedings cited in Reference 5.

27. Sue, N.P., "A Yield Criterion for Materials," Inc. J. of Powder.

Metallurgy, 5, 1969, pp. 69-78.

28. Higgins, C.J., "Some Consideration in the Analysis and Prediction of

44



Ground Shock from Buried Conventional Weapons," in the proceedings

cited in Reference 5.

4f,

(The rcv rsc- ot this page is blank.)



APPENDIX A

GROUN'D SHOCK PROPAGATION

IN VARIOUS SOIL TYPES

This apperndi: discusf-es the capability of the porous model to describe

many different kinds of porous materials by appropriate choice of the

funrctional forms. Presently, the model involves two critical functions that

determine the inelastic behavior of porous materials. They are the P-a

relationship and the yield function (see Section II.A). However, since the

ptesent P-a relationship is determined by a mechanistic model to minimize

ti:, nuxnhei of free parameters, the function to be selected is only the yield

furic ionr.

There are many suggestions for the yield function (some models involve

rano,- than one- yield function) to describe the inelastic behavior of porous

m iial- R(T-(f1renCe 15). In this study we chose a lemniscate function and

evaluated tht, predictive capabilities of the model by conducting a

p:lraJtri simulation of the scaled data on ground shock propagation in five

s i types .Refer ence 2G). These soils were characterized as: (1) loose

1 t,, sand, imedium, density sand, (3) very dense sand, (4,; sandstone,

anr (5 silty sated. The shock data is said to be a compilation of more than

(1,P hundr-etd ex:i,)sion tests over Ii( past 35 years.

Tf,- behvor ef tht fivt soil types were modeled b-, appropriate

s,,lections of the material parameters in the lemniscate function illustrated

it! Figure A-1 and defined by

'1. , ( ' / a,1  -', (A.

A (A.2
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LEMNISCATE YEILD FUNCTION

g=(jc )2+(VJ3Jl)2 COn(*P*5

co

L) n>0.5

ICl1 I

0

Co  pp (a)

PRESSURE

Figure A-]. Lemni.catt, Yield Function
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B(a) - c cosW(na / 2) -(a) (A.3)

pp(a) (YP) [(1a /3 - c p(1 - a 2P/3 (A.4)

cO, cm, m, P, and Y are constants.

The specific soil properties associated with the yield function are

summarized in Table A-i. The relative importance of different parameters is

difficult to determine, but four of them are found to govern characteristic

features of the ground shock propagation in the five soil types. They are

ao (or the initial porosity that determines the sound speed ratio Cto/Cso, n

and Cm that control the maximum shear strength as illustrated in Figure A-],

and * that determines the initial slope of the yield function. In Suh's

formulation (Reference 27), * is the slope of the Mohr-Coulomb failure

surface.

Other material properties that are associated with the Mie-Gruneisen

equation for the solid components of these soils are assumed to be the same

for all the soil types and are listed in Table A-2.

The parametric simulations of buried explosions were conducted by using

the gas expansion model developed by Chadwich et al. in Reference 28 . In

this model the pressure of the exploding cavity is given by

p = o (a/a )-3r (A.5)

where po is the initial pressure when the cavity radius was ao, a the

current radius, and r a constant. The explosive parameters were obtained

from References 28 and 29 and are summarized in Table A.3. Selected results

of the simulations are shown in Figures A-2 - A-5 and Table A-4. In these

calculations, however, no systemaLic attempt was made to optimize the

materials properties to obtain the best fitting to the experimental results.
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TABLE A-]. PARAMETERS OF THE LEMNISCATE YIELD FUNCTION

Pa-ameters loose medium dense sand silty

sand sand sand stone sand

0.5 0.59 0.68 0.78 0.78

n 0.05 0.05 0.05 0.05 0.5

+(degree) 53 53 53 53 45

Co(MPa) 0.1 0.1 0.1 0.1 0.5

Cm 7.2 6 3 1 1

P, 1.2 1.2 1.2 1.2 1 .2

Y(NWa) 2 2 2 2 2

pF 6 £ 6 6

C, 0.95 0.95 0.95 0.95 0.95
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TABLE A-2. EQUATION OF STATE

Properties loose medium dense sand silty

sand sand sand stone sand

Initial porosity (%) 50 41 32 22 22

Sound-speed ratio (Cto/Cso) 0.05 0.08 0.15 0.2 0.2

Density of Solid (kg/m3 ) 2700 2700 2700 2700 2700

Shear modulus (Solid)(GPa) 24 24 24 24 24

Bulk modulus (Solid)(GPa) 39 39 39 39 39

*The pressure-volume equation for solid:

p 39) 3 s L - 1 + 60.5 - J , in GPa

o Iso



TABLE A-3. EXPLOSIVE PARAMESTERS

Explosive type: TNT

Charge Weight, L: 512 kg

Radius of cakity, au 42 c m

Boundary pressure, P.: 22 Gpa

The constant, r: 2.33

Scaled range W: I ikg/ 8
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ATTENUATION OF PEAK VELOCITY
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Figure A-3. Attenuation of Peak Pirticli, \eocit. For Clarity
Experimental Curves Vere Not Drawni, But Were Located
Between the Calc'ilatedj Single 1,ine for = 0l.5, 0.59,
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PEAK STRESS DECAY

P =Poe-y t/a

W=0.4075 (R-3.26m)

N

an 0.55

0.1

0 12 3 4 5

TIME (X 10-3 sec)

Figure A-4. Peak Stress Decay in Time at a Fixed Stand-Off
Distance. Experimental Data are Only Shown for
Ct = .78 (L.S.) by Broken Lines



PEAK VELOCITY DECAY

V(t)=Vo(1- Pt/ta) e -'tItl

W-0.4075 (R-3.26)

0.50
05

! i 0.78 0.68

0.1
0 1 2 3 4 5

TIME (x10 - 3 sec)

Figure A-5. Peak Velocity Decay in Time at a Fixed Stand-Off

Distance. There was no Agreement Found Between

Calculations and Experimental Results
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TABLE A-4. CALCULATED ATTENTUATION COEFFICIENT, n

Sand Type Initial Peak Stress Level n

Go  (MPa)

Loose sand 0.50 1000 - 30 3.52

30 - 5 2.80

Medium dense sand 0.59 1000 - 60 3.31

60 - 7 2.53

Dense sand 0.68 1000 - 60 3.00

60 - 10 2.23

Sand stone 0.78 1000 - 100 2.44

(High shear 100 - 35 2.05

strength) 35 - 20 1.05

Silty sand 0.78 1000 - 80 2.33

(low shear 80 - 20 1.68

strength)

Figure A-2 shows a comparision of calculated attenuation rates of peak

stress with those summarized from the experimental data. The calculated

trend of the attenuation rates is in agreement with that discussed in

Reference 26, involving parameters such as porosity and seismic speed.

A similar agreement is found with the results regarding other

parameters: attenuation coefficients (Table A-4), attenuation rates of peak

particle velocity (Figure A-2), and stress decay (Figure A-3). However, no

good correlation was obtained with particle velocity decay (Figure A-4). In
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these figures, the stress and velocity decays that characterize pulse

.rofiles are defined by Drake and Little as follows (Reference 26). First,

:he arrival time ta is defined by

t a Ric (A.6)a

Ahere R is the distance from the explosion and c is the seismic wave

propagation velocity. Then, the stress and velocity decays are defined by

o(t= p exp(-rt/t (A.7)
0 a

v(t) = vo(1 - t/t ) exp (-At/t a ) (A.8)

where up and Vp are the values of the peak stress and peak particle velocity

and y and P are time constants. They find that for most applications these

time constants may be approximated by r = 1.0 and p = 1/2.5.

They aIso found that the rise time of these wave forms is typically

about one/tenth of the travel time to the target point. The corresponding

calculated results varied from 0.06 to 0.17 depending upon soil types arid

locations. An .ccurate evaluation of the coefficient is difficult because

of the ambiguity in the definition of travel time for a dispersed wave

profile. But, thc calculated results are consistent with the reported

empirical value.
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APPENDIX B

INPUT PREPARATION

Four sets of input data are required to run a problem. They are, in

the order of appearance, general running data, materials data, cell and

coordinate layout data, and velocity data. As an example the complete input

deck for the calculation of the buried frame is shown in Figure B-i. Any

consistent system of units can be used for the calculations. Some popular

systems are shown in Figure B-2 (Reference 9).

A. RUNNING DATA

Line 1 (215. Fl0.0)

Columns Variable

1 - 5 frequency in cycles for printing selected

solutions

6 - 10 the maximum number of computing cycles

11 - 20 initial time increment

Line 2 (515)

Columns Variable

]- 5 boundary condition

-1 Fixed y-velocity at i = imin and 'max

-2 Fixed y-velocity at i = imin only

-3 All free edges

-4 Fixed y-velocity at i = imin,

Fixed x-velocity at J = imin and Jmax

-5 Fixed y-velocity at i = imin and i,

Fixed x-velocity at J Jmin

6 - 10 number of blocks in the problem

11 - 15 number of materials
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30 450 .1E-06 ] General
-2 7 4 1 running

.3470E411 data

119 F-Ol .689EO, .904E10 .198F0: 5
4. .1 0.02
300000.

.800 E12
.278 E0I .750E09 .300E12 .65CN0F
4. .1 O. 02 Materials

3.900E!1 6.05F1l 1 data
2.7 7.5 E08 2.40E1 512799.
4. .1 0.02
.08 .59
.131E12

.208F01 .282E09 .940E1] .351E06
4. .1 0.02

1 15 0. 2.8 2.8 0. 1
I 1 0.0 0.0 2.0 2.0

15 16 2.8 3.0 3.0 2.8 1
] 11 0.0 0.0 2.0 2.0

IG 21 3.0 3.7 3.7 3.0 2
1 41 0. 0. 8.0 8.0 CCll a:d

21 31 3.7 4.7 4.7 3.7 3 coordinatt
4 0. 0. R.0 8.0 1 ayvout

, 61 4.7 7.7 7.7 4.7 ,1
2-, 41 5.0 5 .0 8.0 F. 0
33 61 4.7 7.7 7.7 4.7 4
21 2 4.0 4.0 5.0 5.0
71) 41 4.7 5.7 r.7 4.7 4
1 2] 0.0 0.0 ,1.0 4. 1

16 15009. 7 Velocit% dait

Figure B-1. Input Data for the Calculation of thf Buried Frant-
Shown in Figuire 14
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Sets of Units

Quantity c.g.s. e.g. Ats S. I. f.p.s.

Time s ps s s

Length cm cm in ft

Mass gmn gin kg slug

Force dyn T dyn Newton lb

Energy erg T erg Joule ft-lb

Energy Density erg/gm Mbar cnI3/gm J/kg ft-lb/slug

Power erg,'s T erg/s Watt ft. lb/s

Density gm/cm3  gm/cm3  kg/rn 3  slug/ft3

Pressure dyn/crn 2  Mbar Pa lb/ft 2

Figure B-2. Consistent Systems of Units That Can Be Used for
Code Calculations
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Y

j2, i2

ji, ii 2
j2, ii

x

Figure B-3. Definition of Lagrangian Positions in a Quadilateral Block
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I

16-20 velocity initialization

1 = velocity initialized for all i 6p to

an interface j value for a projectile

impact

-1 = velocity initialized for all i and j from

an interface value to Jmax.

21 - 25 maximum value of j in initial calculations.

P. MATERIAL DATA

Line 1 (4FI0.0, 15)

Columns Variables

1 - 10 al in Equation (14)

11 - 20 a2 in Equation (14)

21 30 a3 in Equation (24)

31 - 40 F in Equation (14)

41 - 45 1 - porous material

Line 2 (4F]0.0, 15)

Columns Variables

1 - 10 specific density

11 - 20 yield stress

21 - 30 shear modulus

31 40 longitudinal sound speed

41 45 fract ure indicator

5 - fracture in the x-direction

G z fracture in the y-direction

Linf- (3F0.0)

C()] unis Variables

1 10 quadratic viscosity constant

11 20 linear viscosity constant

21 - 30 triangle viscosity constant

£3'



Line 4 (2F10.0)

Columns Variables

1 - 10 Cto / Cs, = sound speed of porous material'

sound speed of its solid component

11 - 20 a o

Line 5 (FIO.0) skip this line if the fracture is not

considered.

Columns Variables

I - 10 fracture strength

Repeat Line 1-5 as many times as the number of materials in the

problem.

C. GRID LAYOUT DATA

Line 1 (215, 4FI0.0, 15)

Col umns Vari ab I es

1-5 31

6 10 32

11 20 XA(l)

21 - 30 XA(2

31 - 40 XA(3)

41 - 50 XA(4)

51 - 55 material number

where il and J2 define Lagrangian x-positions of a quadrilateral block

as shown in Figure B.3. XA(n) are x-coordinates of the corners of the

block read in counterclockwise direction starting with pint of smallest

J, j values.
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Line 2 (215, 4FIO.0)

Columns Variables

1-5 i

6 - 02

11 - 20 YA(1)

21 - 30 YA(2)

31 40 YA(3)

41 - 50 YA(4)

where i1 and 2 are Lagrangian y-positions defined in Figure B-2 and

YA(n) are y-coordinates of the corners of the quadrilateral block.

C. VELOCITY DATA

Line 1 (315. F1O.O)

Columns Variables

1 - 5 minimum i value initialized at the velocity u

6 - 10 maximum i value initialized at the velocity u

11 - 15 interface j value for a projectile impact

16 - 25 initial velocity of a projectile
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APPENDIX C

LISTING OF COMPUTER PROGRAMS



CCviA(A4/TX (300) Y (3001 ID (3000) YD(30001,1(3000) A (3000)

:, (03J .D(3000) ,SIX (3000) ,SYT (3000) ,SZZ (3000) ,TIT(3000)
.*TXI (3000) -YY (3000) ,TZZ (3000) ,P(3000) ,E(3000) YY (3000).,
*L'VY (3000) *E;X (3000) ,EYY(3000) *EZZ (3000) ,EXT (3000) *ALT (3000),

CovON/E S/tUS!C (b) EhjSTD it)) E,.jSTS (6) REHO (6) Y C (6) *UMU (6)

cL? Cb/I~iD/ ,lis10)
COSISON/FSP/ TSiF(10)
COMMl0i/POR/ ALP (3000) ,SXIS (3000) ,STYS (3003) ,SZZS(3000) ,TLXS (3003)

*.TT!S(3000).TZZS(3000J,TXTSL3000),PS(3000),EVVS(
3 0 0 0 ) *EXXS(3000)

#,EY!S(300J,EZZS(3000),EXKS(3000),EJ(3000),ALPO(6),IPOE(6),CTCS(
6 )

DIXEliS1JN XL (100, 100) ,YL (100, 100) *IN (100. 100) *LVAB (100, 100)

JSIZE=15030
JX= 130
Kxi 103

REA.(1.2~2)Nh,HEMAX,DT
FC-AA7 215,f10. 3)

aii!TE43,2223) NIN,1.5AX,DT

CALL LAYO'J2 JSIZ.. ,JAX,KXX,XL, YL,IM1, LVAB)

1,J N=N+l
lFJ.GT.UIAX) CALL EXIT

C&Ll. 3iiEP (JSI1ZEJXX, KX X-,~Y L, MM5,LVAR)

LV3zLV&R (21 ,2)
LV'4=LVAE (26o,2)

ck dRI-E(3,l3t NTI5SEP(LVI2.EVV(LVI),ALP(LVIJ,SXX(LVI)
cc,. *,S' 1 X(LVI),P(LV2),EVV(LV2),AJ.P(LV2),SXX(LV2),SYY(LV2)
Lc. boia:E(9,1030OJ 1,TIME TIXX(LVI) ,TXX (LV2) ,TXZ (LV3J *TXX (LV'4) TXI (LV--)

4rIrE(lj,1030) N,TIIIE,TLX(LV1) *Txx(LV2),TXX(LV3),TXX(LV4),TXX(LV5)

o i TE ('y , IC3 ) N, TI .FTX (LV 1)'XX (LV2) TX X(LV 3) T XX(LV4) TX X(L'5)

o F~i 1,121E,D

C M. I~T (15, 2f 103.

IF(.E.Vkd) Go To 951

*9X,ITxY,12X,'P',9X,'Uly',9X,'SXX*,9X,5SY',8Xo'ALPA'.//)

I F 4N-LT. 145) GO TO 95 1
DC 950 K=1,xCHmz
DO 920 J=1,JflLI

LVARBfL VIR J9, J)
1?(LVARN.LE.0) GO TO 920
ILJ (LVAE).LE.Q.AND.J. EQ. I) GO To 920
MRITE(3,1040) J 1E,1VISM I (L YARN), ID (LVAEIS) ,TXX (LVAE5)
*TTY (LV ARM) ,P(LVkR11) ,TIT(LVkRN) ,SX (LVARB) SY (LV ARM) ALP(LVAEN)
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C --- DISK 9 FOR I.J,K,X,Y,XD,YD.PE
L rIISKI0 106 9,J,K,EXIEX,EY,EYZZALFA,EY
C DISKII PON N,J,K,TXX,T!YTXITTZZ,SXX.S!TSZZ

c WEITE (9, 1 11 N. J,K, X(LVAF.8) ,T iiVL-16) *XL (LVA6RI) , YD (LIARS)
L *, P(LVAtle)E LVIFN)

C E!7 TE 10, 91 1) N.J, N, EXX (LiAS IB EYY JLVAE $I) ,EXT LLVABI)
c +EZZ7 &i.ABM) ALF& (LVARM) , EVY (LV ALM)

Ni'ITr., I I~ t ,J,i(,X (LVAR) , Y LVAFA) T:XX (LVAHM) 711 (i.VAiII
*TZZ (LV~a~jl ,XYi(LVABM)

lII I FORM. 1 (.l5, 6E 10. 3)

P CC' 'LAS ,Iy 1LYALS

*.i~ CCUTIbUE
Il CONT I UE

D t I 0. 9*DWDMN. kftXl I I ZT ,0. 0 3 , DTW))
DTN=0. 5*(DI .DTN)
I F ( .; 1. 1 .E- 12) GO 10 10 0

WBITi (3, 1020)
13-2- FC65MA1(1X.STABI.LITlY')
1030 FO&MA(157f10.3)
10 FO i 1A I j3 5 ,2 1,I OE 12. 5)

SUBiLOUTItN LAYOUT(JSIZE.JXI.KXZ.XL,YL,.5U,LVLR)
IMPLICIT BEAL*8 (A-i,O-Z)

CLS~iuN/T/X(300-)).Y(3000),XD(3000),YD(3000),S(3000),&(300)
+,Z13303i).(3000),SXX(3000),SYYJ3000),SZZ(3003),TXY(3000)
..TXX (3000) TIYY(3000) TZZ(30001 ,P(3000) ,E(3000i *YY (3000) ,
.EVV (3000) *ZXX (3000) EYY!(3000) ,EZZ (3000) ,EXT (3000) *&LF (3000)
*I1 (3003)

C 50M/ES/lUSTC(6) ,Ev)STD (6), EQSTS (6) ,RHO (6) ,YC (6), UBU (6)
+,CLIO jo) C% S1(6) Tfil,)(6) SP (6) EQSTG(6)

COM/GEN/UZEBO,DT,DTN,DTW,IJ0bOMD,JNAX,JflI,KILX ,K8IN,KCIEK
CCAMON/IND/ NFR(10)
C0MMON/FS&i/ TS ( 10)
COASOb/POR/ ALP (3000) ,SXXS (3000),*SYIS (3000) .SZZS (3000) ,TIIS (3000)

*,TYTS (3000) .TZZS(3000) ,IXYS (3000) ,PS (3000) ,EVYS(3000) ,EXIS(3003)
* ,EiYS(3000) ,EZZS(]000),EZYS(3000),EJ(30t)OhALPO(6),IPOR(6).CTCS(6)
DIMENSION XL(KXX.JXX) ,YL(KXXJXX) ,n5(KXI.JXX) ,LVAR(KXX,Jxz)
* ZA (4) Y A (4)

Y (Jj -

11. () 0.

AL l) 0.
JJ j 0.

A1U) =0.

si (3) 0
sX y i).
SYY (J)=.

III (J)=C.
IY (3) z
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P ji)i0
E ()0.

I (3 0

ALP (J) =0.
Sxxs (p) =0.
SlyS 4j) =0.

!XIS (3) =3.
TYYS (J) =0.
Tz zs (J) =0.
-r x s (3) =3.
PS 13) =0.
EVVS (J) =0.
IXS (3) =0.

PT'fS (J) =0.
EZZS (J) =3.
zXys (J) =0.
EJ i3) =0.

10. CCSrINJE

J K=J)1*XY

Bc 10.4 J= ljxx
XL (I .3) =- 9 9 .

!i P 11, J) = 0

j 5 A IlIj 3uN3 K.TXSI7PCL

~17 3 , 2 1 I) I J D , BC0C K, MTPS , T P E, KC HE K
212FOBMA-,c11,':Jo3UN=',12,31,'MULoCK=',12,3X *N5TBS=' 12,3x,

* 1~1Y P=':2, 3X , CkHEl= *1

B - T ( 3 ,2 1 2 2  E w5TC ( ;) , E 35T D(I1) , EQS,3T G (1 I E S T S(1) , IPO R 11)
-122 FORMAT(1X,SL.,STC=S.E12.5,3XUE

3 STDOIE12.5,3X,'EVSTG=',E12.5
*, 3x,'EgSTS=',E12.5,3XoIPOR=m,12,/)

12s FOB.9AT(1X, 'DENITY='.E2.53X,'yC=' ,E12.5,3X,SJEAL& flOD.=',E12.5,
*31.'SOUtiD SPiUED=',112.5,3X.'FRACTU~iZ OPT,.=',I2,/)

IP(IPOB (1). 1Q.0) GO TO 1114
Ff A D ( I, 10 1 1) C TC S(I , .L PO I I
WRITE 13,3233) CICSJ) ,ALPO (I)

3433 FCBSAT (1X,@CTCS=',E1O.,3.31,'ALPO=-',F10. 5,//)

1 1. IF i FR (1) .E Q.3) GO0 TO 13 5
5E D ( I, 10 1 1) T 52R(1)
W RITL (3,4344) TS2 (1)

4~344~ FORIMAI(1X.'PRACTURE STRES=1.E12. 5)

l135 CCNTIVUE

C--CEIL LAYCUT

DO 250 NB=I.NBLOCK
RIAD(1,1030) K1.12.(XA(I),I=1.4),MAT

REAnD (l 1030) Jl.J2, (11 (I) I1=1,4)
VB 1T E (3 ,6 5 90) J 1,J 2, ( YA (I ) , I- 1,4)

c.:,6 FuBI5AT IX, * 3 ,31,215,31, '7 * 4E12. 5,/)IMTI,

6 q



L

DJOK= (J2-Jl) *(K2-I)

DO 210 K=91,K2
DO 210 J=JI,J2
IF?(ILIj1(J) EJ-9. ZL(K,J)= ( (XA (1) * (32-3) *I A(4) * (3-31)) *(K2-

*K) * X (2) 04J2-J) *XA(3) 0(J-JI))* (K-K) )/DJDK
IF (TL(K.J) . 1. -999.) YL(KJ)= ((IA (1) 0 (32-3) +Y A (4) *(J-J 1)) *(K2-

+K* (I A(2) *J2-J)*YA(31*(J-J I))* (K-KI) )/DJDK
C

IF(K.GT.Kl .AND. J.GT.31) 85(K,J)=fiAT
c

210 ccbiis~uE
250 CONTINUE

DO 303 K=1,9K5&X
DO 283 Jz1,JAAX

I F(J. LE.1) UC; TO 2681
IF4LVAB(KJ-l) .GT.0) LVAH(X,JJ=-l

2bl IF(IL(K,J).iE'.-999..OB.TL(KJ).EQ.-999.) GO TJ 280
C

J I= elA 10 (J H,J)
LYAB (9,J) =LVARM
I JLV Afl) = XL IK, J)
Y (LVABB) =TL (K J)
M ILVAIJS =SM ' 3
l(LVABBS) 2

RAT=M1 (K, J)
IP(I*T.EQ.0) GO TO 260

A)1,=0. 5* (Xl(K,J-1) *(YL (K,J)-YL(K-1,J) )-XL(K.J) * YL (KJ-1)

.jZ=tj. 250 CIL (K,J) *XL (K 4 J-1) +11. (K-1,J) IL (K-I ,J- 1))
YZ=.2*(YLU,J)+YL(K,J-1).YL(K-1,J)4YL(K-1,J-1))

hvA fi~H C J.1A 7)
IF(CG(MAT).NZ.0) D(LVA PH (flAT ) ALPU (MAT)
SF (!POu (MA ) .L.j A.P LVAhM)=ALPO UIAT)

ZLVA SB)D(1V A ? F)*A(L VAB~j
IF XC ~1A) h:. .)YY (LVAFI,) rYC (BAT)

200 cch:INUE

.2d) CGkiTINJE
300 CCN7:hJE

J MAI=J:l

@?RTE (3, 13,) KBIAX,JMAX
132 Fub.ATlkX,' f.MAX=',I15,51,1JJAX=1 1I5,/)

~--N~~AL 2 ~ 4EL. 15i GUE rBLOLF

,EAD ( 1, 103 Ji3,JU,KU,UZEhiu
a-PITE 13,21Z.2) JH,JU,JKU,UZEi'u

21C F A ., J = 2 3 ,J = ,3, ~l1 ,3 . Z R = 1.5
ABSc3

AMA55=1.

BIA5370



1IKU I= 1.
UZIr4T=UZfacQ

O C 1 1) J=2,ij
IF (flM JU,J) .,Lv. 0 .OR. RKf (KU# I .J). LE. 0) GO TU 3 10

IF (I PO (11A) MNE.O0) BKU=ALPO(U&)

IF (IpO (JIB) . 0) RKU 1=ALP0(111)
£3IASS=AflASS#BKU*EHfU (MA) *(XL (KUJ) -XL(K0-1 J)
BIASS=BMLSSBKU1HO(BB)XL(KUI,J)-XL(KU,J))

313 CCNTIkiUE

It (LBASS+BSASS. GI.O.. IMO. IYPE.EJ. - 1) UZIMT-UZEEO*BASS/

1?(AflSS+BMASS.GT.O. .AND. IVTYPE.EQ. 1) UZINT=UZERO*ABLSS/
£ (AIASS*BMASS)

DO 325 K=1,KMak
Do 325 J=I,JBAX
IF (LVIS (K,J) .LE.0 ) GO TO 320
LA=LVAE (K,.])

IF . GT. KU. AND. VTYPE.Q. - 1) ID JLIQ=UZEEO
IF(K.LT.KU.AIID.IVTYPZ.E). 1) ID(Ld)ZUZERO
IF (J.LIE. JU. ID.K. EQ.KU. AND.J. GE.JB) XD ILM)=JZINT

3'.0 CCUTINUE
32- CCNTlNUE

IP(KCaEK.UE.0) GO TO 450
KCHEK=KSIX
IF gIVTYPE.EC. 1) KCEIY=KU+3

5) COUTINUE

z:(3*1250)

D" '4LO J=1,JIIAX
LM=LVA~ (k,J)
If ( .. LE.0) GO '1O 463
IF (.9M(K,J).GT.,)) GO TO '455
6EITi(3,1280) J,K4,MI(K,J) ,L.,I,X(LM1J,Y (L ),ZEBO,ZEBO,ZEEO,ZEB0

*,XJtLM)Yrjilt,, ZRL
,;C T: 460

1F (YC (? AI) E.0) rYYY-YY (LM)
~2tE3,h3) ,KA2,L.X(ft)Y(L1) A(LM),D(LM ),Z(LH),*YTY,XD(LI)

* YJ Ll) * E (LE)
4.6Q CC97NUE
'.70 CChIhIJE

10 li FUL.AA" (515)
113 FCb.MA7 (3F 10. 3)
IC1; F0RM1(4E10.J,I5SJ
13 12 Fu6.21AT ('.110.3,15)

12'32 FOSMAT (315, £10. 3)
l~e S FC.:I5AT j Ifl , 41 , J' 4X, 'k-' 4X,' i ' LYAH'. I IX,'X',1iIX,

Id Iil, II X .IA, I IX, ID, I1A, Ih Z, 7k,5HY IELD, IOX, "HID, IOX, 2YDIX ,

I i.-

iUbhuAr.NE izX.' P [J5IZE,JXX,KXI.,XL,YLflM,LVAR)
I mpLICIT bjiAL*d(AUOZ
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C CONU5ON/T/X(30G0J Y(3000),XD (3000) YD(303)fM(3000) A (3000)
*,ZIS3003). D(3000) SXX(3000) SY 1(3000) SZZ (3000) TXY (3000)
*.TX13000) ,TYY (3000) T7.Z (3000) ,P(3000) E1(3000) TY (3000).,
*EVY (3000) EXX (3000) EYY(3000) .EZZ (3000) ,EXY (3000) ,ALF (3000)
.111 j330))

CoalftON/E ,S/E .STC (6) o EwSTD (a) , EQSTS (6) ,RHO (6) , YC 16) , UN11' 6)
*,CLlN (u) ,CQS.,j (6) ,TfIlQ (6) .SP (6) ,EQSTG (6)

COflMUN/GEN/UZ~i.Uj,DT.DTR,DTW,IJBUD,JMAXJINKMAXKMIN,KCHEK
COSSON3/IND/ 1412(10)
COafl5Gh/FSR/ TSR ( 10)
CO0bC/POR/ AL2? 3300) *SXXS (3000j ,SYYS (300.Jj .SZZS(3000) ,TZXS (3033)
*,T!!S(3000),TZZS(3000),TXYS(3000) ,PS(3000),EVVS(3000),EXXS(3000)
*,E!YS(3000) ,EZZS(3000),EXYS(3000),EJ(3000),ALPO(6),IPOE(6),CTCS(6)
ZIaEi;SIUN X1(KXX,JXX),YL(KXX,JXX) ,lMl(KXXJXX),LVAR(KXX,JXX)
DIM FWSICW XT!MP (100) YTEM4P(103) *XDTEMP P100) .YDTEMiP (Ia0)

DO 123 I=1, 100
XLTEMP 11) =3.
!TEIIP II =3.
XDTEMF (1) =0.

123 fDTEMF I) =0.

Du 950 X=I,KMfAX
Dc 920 J= l,JtiAx

LVALr,=LVAfi~,'J)
-iF(L~lv&.LE.0) GO TU 783

TXXii3.

TZZW=O.

SzX11=0.

EhiO.

S 0J .

zDKiEi=xD (LVABI5)
YDliki!D WLAF.4)

F T 3.

1 8011= 0.
1ASSSD.
L 3= LVIRS

C-PI1, THE COOBD. OF CELLS AROUND POINT (KJ)
C

cc 36~0 1=10~4

c 4BITE13,1456) K,JoI
L1,456 FEI'(X'-----35

DEASS=O.
GO TO 1233, 240, 250.,263) ,l

C--I=1, UPPENR IGHT HAND VULD9AWT

230 iFit(.Ev.lmlx.oaJ.EQ.JlAX) GO TO 360
IF(flf(K*I,J.1)..LE.O) Go To 360

L I=LVAR (K* I1J+.1)
L2zLVAB (KJ+ I)
L46=LVAR (K.1,J)
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BIAT=ib(K* 1,J+ 1)
GO To 270

L
L--1=2.UPPEB LEFT

240 IF 5. EQ. 1.OI.J. EQ..J5AI) GO To 360
I7(ftU(K.341).LE.0) GO TO 360

L 1=LVAE (K-i ,J. I)
L2=LVAB (K-i ,J)
L4=LVAB (5,J.1)
L8=L4
8 AT- 911(K,J + 1)
GO To 270

L

C--1=3, LOWER LEFI

.53 IF J. EQ. 1.OR. J.EQ. 1) GO TO 36 0
IF(BM(K,J).IE.0) GO TO 360

12=LVAB (1,J- 1)
L4=LVAR (K- I J)

GO TO 270

C --- lz4, LOWER BIGHI

2fLO IF(K.EQ.KM&l.O.J.EQ. 1) GO TO 360
IF(BfilK*1,J).LE.O) Go TO 360

L

1. =LVLR (K. 1,J- 1)
L2=LVZB (K. 1,J)

.4= LVAR (K ,J- 1)
LII=.2

GO TC 270

.2CONIIN'JE

333 X02=0.5'(I (Li).!(L2) .X(L3) .X(L4))

3)5 £GO (132-1 (L3) ) * C 2) -X(L4) .1(1.2) *(Y (L3) Y (14)-Y02) .1(14)
*S (Y02-Y (12)-! (13))

A3=X (14) *(Y (L2) -Y (L3) )-l (13)' (1 L2)-Y (L4) ) X(L2) *(Y!(L3) -T (14))

AXY! 110#13) /8.
AXX= (Y(L2)-!(L4)/2.
AYY=IX(L4)-X(L2))/2.
TZZAIX!0.

IF(DMASS.IdE.0.) GO To 330

50 TC 333
C

J-,3 QII=O.
~r.Y=O.
.jry=3.

L

C-STtAINS ARE POZITIVE IN TENSION
(2

lF(TRIV.(MAT).Evj.0. OH-13.LLO0. IlXY) GO To 340
L

EDXX= ((10(1.2) -XD(13)) *(Y(L2)-Y (L4)) -(ID (12) -XD (14)) *(!(L2)-
$ 1(L3)))/13
EDYY=-((!D(12)-YD(L3))*(X(L2)-X(Ld4fl-(YD(L2)-YD(L4))*(1(L2)-

+ i(L3)))/13
EDX!= (- (ID(12) -ID (13)) * (I L2) -I(L4) ) G(XD(L2) -XD L4) ) *(I (L2) -

I Z(1.3)) (I (12) -YD(L3)) * (1(12)-! (L4) ) - (YD (2) -Y0(14)) '(1(12) -
2 Y (L3))/A3
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c
C--rE1ANGLE Q STE.ESSES ARE POSITIVE 16 TENSION
c

COE?=DSQBT 1A31 -SP(ISAI) *D (LM) *TRIO (fATJ
tjX=CCEF* (2.*ZDXX-EDYT)
QH-=COEFOg2.*EDYY-EDI
QXYJ3.*CCEFOEDXT

J40 fI.!Z(XIJ*QXX*AI*(TXY(LMJ*QI!)*AYI
Fl PT. (TX! (LUl) QXY) *111. TYT(LMI) .gYT)*AYY-TZZi TY

c MRI7E(3,1978? L1UL2,IL3,LJ4,llAI.AOEAJAXXAY!

C WiITE(, 1 798) XQrQYY.~A~S.
C1478 FOEMAI(5I5,4E12.4)
C 17Thb FJRflA (61 12.4)

It (J. E2.J5IAA. AtD. lJBABS. E2. 1 .LE. 1J CAiS.L4'. 5)~ tO To 34P7

I?(J....N.IJBUND.ME.-3) GO To 347
JLYDNr=YD JIM) DN*FY/AMASS

347 Y L*Y~l i~CT

IF (K. . 1. AN.,. jIJBABS.ZE,. 4. OB .IJBA33. -7.. 5.06.
*IJJABS.E,.. r) ) GO To 357

5~t NX(L8) *DT, .FX/AMI.3S

S(AJ). E,.0) GO To 750

~--lE1: khrA AN: YIL. FOE CELL rK,J

A I ,=17M? (3- 1) * (YhW-YT~flP (.1) -Xhm*'2~ J-I -YTEM~? (Jj
I X7.5M (J) * (YTE! PJ (31) -MNi)

L!=LVAF (K,Jj

L KliL VAB [K J- 1)
LIJ =LVA a (Y< I ,J)

A.23 -=XT E?!P (J- 1) * (Y: Etl (J) - Y k.MJM + ITCEMP (J) *(YrNN ','- YTEM1P (J- 1;)
I x m. J* (YT I me "J- 1) -Y-.EmP(J))

4.Z Au3 5' (A le.4 +A 2 34

IFIA6.3. A-u> 425

111 F, A I X . L? 5. 4

kwI
DlA- /(Am+ jIM.



Y Uti 13=YDBI- 10 LK)
Y DH42=Y DTE.Iii J- 1) -YDTE.NP J)

L--DEL!14E LLU.'D. CY CELL

1 1= . Ss (X (L E) # IN i)
1 2= 0. 50 (XTEIIP (J3) #X (LflJ)
X 3=XHAM

Y IzU. 5# JY (L!) *XSW)
Y12=0. 5* (YBMP(j) *Y(LMJ))
13= YHe1

C--S UABED CF VEC7093

IIS A G433- X4-X3)**2* (Y4-Y3) **2

DBA41= (X4- 11) **2 IY-Y (1) * 322
IMA 1-2 (I IX2) **2 (Y1-Y2) *(3-2) 1 )

X 1= (X2- 13I) (I1-4)412 1 (12-3 1-74

D3I=- D213-12.) *D(2-XI#4=3. )*(Y- 1

Iti D143.LE.0.) D432=0.

I3 F CD32 E.0) 3 10
I F1i D214L . D214=0

F ( 43=0 LE..) D43=0

06 32= 03-D4232*&GQ

D 143=r-D3 1/Z43G12

DEL=D41NI XIIAG 12-D4321/XI8G23,
INAG 2-D42/XIIAG43,

2 ZMAG23-D321Q/ZkG12,

IMAG4 1-D14 3/XNAGI3 ,
7 INAGd43-D143/ZBAG41

F VUL= 2. *(D (La) - DW) / (D ILA) +ON)
E11i-=DT A* (XOHf42 *TH I3-lI42'XDH 13)
EYYHi=-D'IA' (1H42'XH I3-XHM2*rDH13)
EXYkHr3.500TA*(YDH42*1813-7Hi42*YflH13-XDH42*XH131E142*XDU 13)
EZZH=~EVGL-EXXiH-EY!H
ALFA=O.5.DTA*(-!DH4L2*!k13rH42*YDH13-XDH42*xH13,XH42*XDH13)

L WITE43,3562) J,K,DEL.X,EVOL,EXXHEYYH,EZZH.EXYk1,kLFA

L

IF(IPORIATj-NE.0) SPH= 1.+ I.-ALP(LM) )/(1.-LLPO (MAT))*(

DELLi=DW-D CLt)
IF (0ELD.GT. C.)
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*. =DElD/DT* LSPB*SP (HAT)* CLIO (BAT) *DSQhiT (AM) #C~JSQ (S AT)
* *AM *DLLD/DM,'DT)

cv I(DELD.LT. 0.AND.IPOR (SAT). NE.O)
C *Q=DELO/DTS(SPR*SPCSAT)SCLIN(SAT)DSQRT(AM)*CQSQLAT)
C +*AW*DLD/DW/DT)
c
C--EZTIMATE INTEiBhAL E?4EPGY
C

DELZ= (3AX (LIQ *EXI.SYY (LM) *EYYH*SZZ (Lii) *EZZiH.2. *TXY ILK) *EXYH) /' W

EAV,;EVOL/3.
BM,;=2. *TXY JLMt) *ALFA

C
IFjliC3SMAT).3J.0) GO TO 601
CALL E -L (EW,EVOL, EXXHi,EYYH, EZZH,.SXXiiSIWSYYW,SZZW,TXYM,Pd,

GGic 6~33

C

C--3LfSII A-EESIAL

SIX6 SIX (LIS 2. *UMUCMAT)* (EXXHEAVG) *BETA
SYYW= STY (1.11) +,. *OiiU (MAT) * JEYYH-EAVG) -bETA
SZZw=SZZ(LSJ*2.thSU(ATJ*(EZZ~i-EAVG)

,X~m=TIY(Lt,)*.*UiiU(IIAT)*EXd(SYY(LS-XX(L)ALA

1iF(YC1 ;AT).LE.3.) GU TO bOO
:;J- =XX.**2,#STY.**2,SZZWi*2+2.*TXY*2
YY=0. 666t7* XX Lii) '2

lFgSJ2-.LE.YYY) Gu TO 600

SYTzYY/3JY6

SZLW=C! *SZZ b
Tl d=CY *TZ k

L
C--ADJUST INTEENAL ENERGY
c

OXu Eii~) +. 5* (SX (LS) SXM)ZXX+ (SY (L) SYYW'EYYH(SZZLI).
I S-Zi..)*EZZd$2.*(TXY(LM) *TIYV) *EXIk)/DW-((P(LSl).Pw)/2..Q)S(1./
20DW- ./D41mi))

C-- CURPUTZ TOTAL SIEESS
C

620 TXZW=SXXM-Pb-Q
TYM=S! TM-Pi-.)
TZZd=SZZM-PV-Q

C--PASATION OF IMPACT PLANE
c

II' INFR (MAT) .ME. 5. AND. NYE (BAT) .vE. 6) GO TO 690
I7(NPE(HAT).EQ.6) GO To 650
IF(TllW.LE.TSR(flAT)) GO TO 690

L
P 1=71XW*EWSTC (MAT)/ (E;STC (SAT)+ 1. 3333*Umiu (HAT))
D!;rL 1. 3333**TXXh'OUMU (MAT)/ (EOSTC (fi-)# .1. 3333 'UMU (SAT))

TlXiv~lAXW-VSX-P 1
TYY.@='X TM-P 14DSI/2.
IZZM=TZZW-P 14DSX/2.

PM- - (TZWGTYYviTZZM) /l.

GO TC 680



c53 IFLTrJM.lE.TSI(5AT)) GO TO 690

P 1=TX!N*EQSIC (NAT)/ (EQS7C(IUAT) *L333*unu(RAT))
DSY= 1.3333eT1!WOUUU (NAT)/ (EQSTC (EAT) . 3333*UBa (RAT))

TXXMTXU-P 1.DS!,'2-
IT!!MTT!U-P 1-DS!
TZZ=TZ ZU-P ?*DS!/2.

PW=- (IXM+TTN.1ZZN)/3.

68OI XFIli (LM).EQ. 1) GO To 690
Id(LB)= 1

IIITZ13,1680) K,J
I1683 FCBfAT(1I,95EPARATION AT CELL 1,J =9,214)

C--COSPUTE SOUND SPEED AND T111,

uS3 EBOD=0.
SPSQ=SP (NAT) *02
IF (IPCB (HAT). NE.0) SPSQ=SPSQ*SPR*SPR
IF SDABS (DW- C ILB) )LT. 1.1Z-8) GO To 700
EBOD=PW/ (DNBMO CHAT) -1.) +2.*Q*DU/IDW-D (Lim)) .1. 33*'oa(BAT)
SPSQ=DEAZI(E8OD/D(LB), .3*SPSQ)

733 DIS;=DZLZ/SPSQ
IFLDTS .GE-DT5Q8l) GO To 750

DEL XTD ELX
DISQT=DTSC
S PS =P SQ
DTS~j=DTSQ

7 ' CCYTINUf
7-, CCwTIbiJE

IF IK. EQ..1) GO TC 793
IF (J. EQ. 1) GO TC 78 5
L 9N=L VA B(K- 1,3J-1)
IFLLNNLE.0) GO To 785

T (L35)=YKnJll

7d-l CONTINUE
LMJ=L VAR (K- 1,J)
IF ILBJ.LE.0) GO TO 790
XHEEI IX (LR3) *ITERP (3) )/2.
YH8B5= IT ILBJ) .!TEMP (3) )/2.
ZKsJB=XTlMP (3)
YKMJ8=YTEMP (3)
I D (LBJ) =XDTEMP (J)
YD (LMJ) =YDTIMP (J)

790 IFJLVARM.LE.O) GO TO 920
ITEIP (3) 21M
YTEMP IJ) =N6
IDTEP(J) =Xrld
YDTEMP (3) -YDbEI
IF(Mfl(K,JJ.!C,.0) GO TO 800

7 5 LB=LVARII
D (La) =DM
EILS) -Ew
SIX ILE) =SXZ le
STY ILEl) =SYYb
SZZJLB)=SZZh
TIT ILI) =T1Kb
TXX JL11) 111hb

77



TI! (LI) =THNi
TZZ (LIS)=TZZb
P (LM) =Pki
ElY ILK) =EV ILK) #EYOL

LIT (LI)=E11(LI) .EYYH
EZZ (LI) =EZZ ILK) *EZZH
EXT (LI)=E1T (LI) EXTH
ALF (LIS) =ALF ILK) +ALpA

C
800 CONTINUE
923 CONTINUE

Iptli.EQ.1) GO TO 940
LMJ=LVA2 JK- l,JifAX)
I? (LIJ. Li.0) GO TO 940
X 11LIj)=Z1iJI
Y (LMJ)=IKMJI!

C
IJ4 N =

C IF (K.LT.KCHEK.OR.K.EQ.KfiAX) GO TO 950

DO 945 J=1,JIIAX
LNJ=LVAi (K- 1,J)
IF(LMJ.LE.0) GO TO 945
IF (DABS (XD(LMJJ ) .GT.. 1E-3.OE. DABS (ID (LIJJ) .GT.. IE-3) GO TO 948

9453 CCNTINUE
GC TC 960

948 KCHEK=I13(X+1,KMAX)
GO TC 960

950 CCNTINUE
903 CGNTINUE

D'O 980 J=1,JSAX
LMJ=LV&L (KK,J)
IF(LMJ.LE.0) GO TO 980
X (1,1J) rITES; JJ)
I (L8J) =VIIP (J)
XD(LIIJ) =XDTIMP (3)
YZ:(LMJ) =YDTEMP (3)
CONlIbUE

C

bEUE N
END

C
C

SUBRUUTLNE IQST (Z,D,P,I)
I.9PLIC:-T hEAL*8(A-H,O-Z)

C
C0MOMN/E.S/E.)STC (6) ,EvSTD (6), * L)TS (t) F~HO (6) Y C (6), UKU 6)

PH=EIO JE'SIC()+EU* (ESTDM) #EMU*EQSTS())

END

2;UzsuUT;NE I-OBELJDW.EVOL,EXXH,EYYdI EZZHEXYH,SXXW,SYTN
* 3Z~. i,* X N,P h, E , BETA, ALFA. LI, liZ, NJ)

MPLICIT BEAL*8(A-H,o-z)
CCMIICN/T/X(3000),T(3OO),XD(3000),YD(3000)fl(

3 00 0 ),A( 3 0 0 0 )
#.Z(3003) D(3000),SXX(3000) SYY (3000) S7,Z(3000) TXY(300)
*.TXX (3000.,TT(3000) TZZ(3000J p(3000) E(3000),YY 3 0 0 0 ),*EVY (3000) ,EXX (3000) .ETT(3000) ,EZZ (3000) *EXY (3000) ,ALF (3000),
#1 U 30C3)
CCUliON/E S/!QSTC (6) ,EQSTD (6), EJSTS (6) R UD (6) Y C (6) 00ib ()

COMMON/POE/ ALP (3000) ,SXXS t3000) SYYS(3000) .SZZS(3000).TXXS (3000)*,TTTS(3000) *TZZS(3000).TIYS(3000j,PS(3000),EVVS(3000) ,EZISj300D)
#,ETTS (3000) *EZZS(3000)hEX'rS(3000) EJ3000) ALPO(6),IPOR B),CTCS( 6 )
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C---- ALP , ALPA Al PREVIOUS TIME flO, PRESSURE AT PREVIOUS TIME
C ALPP,PIP, ARE VARIABLES FOR ITERATION PROCESS
C

LLP ;=ALP (IN)
C 6 IlTE (3, 123) K, J, LHALP (LIS) ,P (LN)
C 123 FOREA'r(1X,IEEFORE',315,5X,2E12.5)
C 12L4 FOBEIAT (IXI F1EB 0 315,SX,5E 12.5)

A LPP= AL Pj
P7O=P (LI!)

10 BHOSDW/ALPE
CALL EQSTIEV,RHGS,PSS,IIAT)

c
PTT=lLPP'PSE
IF4DIBS (PTP-PTT).LE.O. 1) GO TO 100

c
C---': E Phi (CEDURE TO FIND NEW PTP

C

DAPT=-I./,E( STC (MAT) *EUJSTD (MIT) (AI-.*(ANU4I1.))

PTP= LPTP*DAPP-PTT*DAPT) /(DAPP-DAPT)
ALPP=ALLPC+ (PTP-PTO) /ECSTC (RAT) * jl./lili/Ui- 1.)

L WRITE13, 100C) 1I,LMI,RBOS,ALPijALPPPTT,PTP,EH
C1000 FORMAT (215,6E 12.5)

11=11+1
IF(II.GT.20) CALL EXIT

c
GC TC 10

10) CONTINUE
L

C---!.EGATIVf PRESURE AT UNDISTURBED CELL 1S FORCED TO GO
c LC TC OFIGIbAL STATE
C
C, 1F LALP?.LT. ALPO (MAT)) ALPP=ALPOfMAT)

C--- SEa ALPA AND PRESSURE VEZE DECIDED. NOW GOING FOR DEVIATORIC
c S,!RESS

UALP=ILPP-AIP
E'AVG=EVCL/3.
ALVT 1. 4DALF/EYOL/kLPP
IFIALYT.LE.O.) GU TO 249
:P(ALVT. GE. 1. ) ALYT~l.
GC TC 247

-9 &LVT=0.
247 ETXX=EXXH-EAVG

ETYY=EYYH-EIVG
ETZZ=EZ ZH-EIVG

c
ESIX=AkLVT*ElIX
E7SY Y=A;.VT*EIY Y
-SZZ=AL VI*EIZZ
ESXT=ALVI'EXYHi

DSAX= .*UMU (MAT) SESXBE-.A
-:Y f=2. *UMU ABAT) *ESYY-BfTA
;SZZ=2. *UI!UIIAT) *ESZZ
031 Y=2. OIUMU(BAT) ESZY# (SYTS (Ln) -SXXS(LM) *ALFA

311S (L5J =SXIS (LI!) *DSIX
SYYS (Lff) =SYYS (LI!) *DSYX
SZZS (LI!) SZZS (LI) 4DSZ.'
:XY S (LM!) =TITS (LM!) *DSlY

; dALPP*S XlS (LI!) 0 1. 0
SYY W= AL P*SYY75(L!) *1. C
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SZZW=ALPPOSZZS ILK) * 1. 0
IT ~a ALP POThITSI(LK)* 1. 0

L WITE(3,td457) SIIII,ST~i,SZZW,ALVT
Cli457 F0BBAT( 11.'DEV0,4El5. 5)

c :

C AL~i; ;RESULT FP.OM ELASTIC
c ALPC(tiA:) ;INITIAL POROSITY
C _;J (L5) ;3J2**.5 AT PBFVIjUS TIlIE FOE STARTING POIiW:
L Aii * PREVIOUS kLPA PUP. STAEFTINiG POINT
C Le CURRENT TOTAL DEN.SITY

C PTP RESULT FbOM ELASTIC
L SHO (MiT) *INITIAL SOLID DENSITY

CALL ELIPT(A.LPPALPO(NAT.LJL),ALPCEDWIPTPPLU).BOI0MAT),
*EC-TC(MAT.IQSTDCAT.SIXWS,SYWZW,TXYWK,J)

c
P W=PT P
ALP(LN) =ALPC
PS (LM)=PM,'ALPQ
SXXS (LB)=SXZU/ALPu
SYYS (Lf)=SYYW/ALPQ
SZZSJLM) =SZZV/A LPU.
TXYS (LM)=TZIV/kLPQ

243 RETUEN
ESD

SUBROUTINE 1LIPT(kLFOALPP,EJ3PLLFAI,RHO,P.PBP.RH0S.&PBP,SXXW
*,SYYW,SZZN, IIYM,K,J)
IMPLICIT RElLO8 IA-li,O-Z)

C --- ZJ,A~lFAI AT PREVIOUS STEP FOB STABTING POINT

Y=2. 0Z06
BETA= 6.

----PUT PEEVIOUS ALFA FOR CHECKING PLASTIC RANGE
ALFA=ALFA 1
ZJ=EJP
P =P P
CC= 1. 000
AM= 2. D00
c=.ocOO
CP=. 75
cK= 1.00D06

C-CURREJT DEVIAIORIC TEES
SUM=SXXV*SXXNSYYW*SYYWSZZW*SZZW,2.*T!*T~XYW
EJO=DSQ'I ( 1. 5*SUM)
E 1=EJO
I I= 1
KK I

C ---- CABULL-HOLTVS PRiESSURE EQUATION
c

R1=2. V30/3. LOO
L

.0O TC 130
90 11=2

ccc IF(PP.GT.PRF )GO TO 100

C---- PLASTIC UNLOADING

c~c CALZ' PLAST(P1,Y 1EiOAMC,OKPPP,PPEJP,EJO,EJI)
Ckc F. =
CCC GC TO 400
c

#c---51AETLL WITH~ PREVIOUS ALFA
c

130 h.- 1*BETA
Ri3=AAA-&LFA
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PI=X/aETA ( I.DOO/E3**E2-CP/AAA-ALPP) **B2)
DP I= 1. *1 1*T/f13**(2. I. DO0)
DDP1=.*R1*Y*(R2.1.D0D)/B3**(B2.2.DOO)

C--PRESSURAE-ALPA RELATION
L

R 4=8 HO/ALFA/HhOS
R5=R'4-1.0OO

IF(I.~.1) GO TU 799
P=kLFA* (AP*55*BP*B5*8l5)
DP=-AP-BP* (14*P4- 1.)
DDP"2 .D30*bF/ALfA*E4*B4

C-- -- DEVIATORIC TERM AND ALFk

7l9 YI=QO*R3**AB*OP1
DY I= Os L-AMR3** (AM- 1.DOO) *Pl *i3**AMi*DP 1)
DDY 1 QO*(ABSO AM-l. 000) s3*' (AM-2. 000) *P -2. DOO*kM*83** (AM-I .D

* 00)*DPI +R3**A'M*DDPI)
4-
C---A AND b

R6= 1.000-C
IF7= I.L00*c

A=2.D000*P-fi6*P 1.OK
;A= 2.DO 0*DP-Rti'DP 1
DDAz2..D.20DLP-R60DlP 1

L'=R7*P 1*0K

IF(1.E.,.I)GCOM=A*A/B/il.EJO*ZJc/Y1/Y1- 1.
IF IIECI. INr-. COM.OT. 0.) GO TO 90

L WRTE (3, 120 C) GCOM, A 1B, EJO,Y I
(.l3 3 F08E&1 (1X.'GCOMl,5E 15.5)

IfIl. F. 1.N r.GCO. LE-0. ) GO TO 3330

fP39 7*)P 1
Dra8f7.DaP1

C ----YIELD FUNCTI0b

G=A*A/B/8*EJ*EJ/Y I,! -1.D00
GA=2. DOD (A *DA- A*A*D~b/B) / B*B) -EJ*EJ*DY l/YI /Y1/Y I
GA=A*DA.3.D00*A*A'DB*DB/B/B-4.DO0'A*DA*DB/B
GAA= (GAA.A*EDA-A*ASDDB/B) /B/B
GAA=2.D)0* (GAA*EJ*EJ/YI/Y I/Yl* (3. DOO*OY 1*DY I/Y 1-DOY1))

GJ= 2. D30*E.J/7 1/! 1
GJ=-D3O/i 1,1

GAJ=-4. DOO* IJ/Y I OY 1/1 1/Y 1

C--- ELEMEN~I CF JACOBIAN

AJ I 1= . 000* (GJ, (ALFA- &LFO) 'GAJ- (EJ-EJO) *G AA)
A J I = -. DO* ( (ALFA-ALFOI *GJJ (;A- (EJ-EJO) *GkJ)
AJ2 1=A
A32 2=GJ

Drr=AJ 1 I*AJ22-AJ 12'AJ2 I
L-

C-AN.OTHEE NONLINEAR EQ. WITH YIELD FUNCTION
C

F=2. D0D * (AL FA-ALFO) *GJ- 2. D00* (EJ-EJU) OGA

C----Nbv ALFA AbD DEV. TE&M

ALFAA =A LFA- 1AJ22*F-LJ 12 G) /DET
EJl=EJ-(-AJ21*F.A311.G)/DEr
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L
C--- EJJ FR~OM YIELr FUNICTIONw DIRECTLY
C

EJJ=2.ZDO*DE JET (DABS( (P I-P) *(P.OK.COP1 I)
EJJ=EJJ/IE1,CK+C*P1) *Y1
IF(II.GE.45) WRITE(3. 1OOfl(J 9 IZALA,RaHOEJ1EJJ,P,P1,FpG

1M0 PCE4KAI(315, 8E12.5)
C

EBaz1.0 0-08
STcC~iuAE ((IJ I-EJ)/EJ 1)
STCD=DAES j (ILFAA-ALFA) /ILFA A)
IF(STCC.LE.ELR.A4D.STOD.LE.EER) ;O TO 400

C
EJ.EJ 1
ALPA=A~EA

II-ii*1
IP(II.GE.50) WHRTE(3.1001)I1.R11O,STCC,STOD
IF4II.5E.50) CALL EXIT

103-1 FCBMAT15X,IbEWTCN METHOD DOES NUT CONVEE.E,15,3E15.5)

GL TC 100
C

if (k~E.2 PP=P
EEJJFEJ I/EJC
SXXW=BXxk*EIJJ
SYYbi=sy yw*EEJJ
szzw~SZZigEIJJ
TXYW=IXYW*EEJJ

302- I F (11. Z. 1) ALF A =AL.FO
I F (1;.WE. 1) ALF A1=1 LFA

ck-. IF(ALPAI.LE.ALPP) ALFAI=ALPP
EJP=EJ 1

SUBRuJT1S I FLAST JP I, Y 1~ A, c, pEP,?,EJ, EJO, EJJ)

IMPLICIT BEAL0i3 (A-flO-Z)

PK=U?.C*P 1
FP=. 5' ip 1.phl

C--- PzFEJ A1~E FiEVIOUS POINT FOT STAVTING POINTO3
C

Pu 1=p
EJ 1=EJ

c --- JACCBIAN
L

AJ 12=2. *EJ 1,Y 1/Y I
AJ2 1=J.*(EJI/Y1/Y1-(EJI-EJOJi/PP)

1DE-'=kJ~lAj,2-AJ12*AJ21

GG= (FU I -PM) 0 (PU I-PH) /PP/PP+.J 10EJ I/Y I/Y 1-I1.
FF=4. *(EJ1* (PU I-P) /Y 1/YI- (Pu I-PI) * (EJ1I- EJ/PP/PP)

PU2=-iLJ22*GG-AJ12*FP)/DET.PU 1
EJ2=EJ I-(JJI *FF-AJ2 I*GG) /DET

STC=DA BS (PU2-PU 1)
STCD=CAES (E.2-EJ 1)
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